Symplectic and multi-symplectic methods for coupled nonlinear Schrödinger equations with periodic solutions

thumbnail.default.placeholder
Date
2007-05-18
Authors
AYDIN, Ayhan
KARASÖZEN, Bülent
Journal Title
Journal ISSN
Volume Title
Publisher
Computer Physics Communications
Abstract
We consider for the integration of coupled nonlinear Schrödinger equations with periodic plane wave solutions a splitting method from the class of symplectic integrators and the multi-symplectic six-point scheme which is equivalent to the Preissman scheme. The numerical experiments show that both methods preserve very well the mass, energy and momentum in long-time evolution. The local errors in the energy are computed according to the discretizations in time and space for both methods. Due to its local nature, the multi-symplectic six-point scheme preserves the local invariants more accurately than the symplectic splitting method, but the global errors for conservation laws are almost the same.
Description
Keywords
mathematics
Citation
Collections